Как мы уже знаем, для обеспечения жизнедеятельности обитателей аквариума необходимо постоянное поступление питательных веществ. Из продуктов питания живые организмы выделяют необходимые им молекулы или атомы отдельных элементов и используют их в процессе жизнедеятельности.
Для построения органических структур необходимы элементы постоянно входящие в состав живого организма и имеющие определенное биологическое значение. Эти элементы называются биогенными. Главными среди них являются кислород, составляющий приблизительно 41% массы растения (здесь и далее в главе указывается массовая доля элемента в сухом веществе), углерод (45,4%) и водород (5,5%). Помимо основных элементов в состав живого организма в достаточно больших количествах входят: азот, кальций, магний, калий, фосфор, сера, хлор и натрий. Они названы макроэлементами. Кроме них для жизнедеятельности организма в очень малых количествах необходим еще целый ряд микроэлементов, к которым относятся железо, медь, марганец, цинк, молибден, бор и некоторые другие. Успехи химического анализа значительно расширили перечень биогенных элементов. Некоторые из них имеют значение только для отдельных групп живых существ.
Как уже говорилось, все необходимое организм получает с питательными веществами. Для рыб, моллюсков и других животных питанием служат уже существующие органические вещества, входящие в состав корма. Они поступают в аквариум главным образом из внешнего мира. Небольшое количество пригодных для потребления животными органических веществ образуется в аквариуме. Но во всех случаях рыбы используют уже сформированный в сложные органические молекулы набор элементов. Эти молекулы, обладая большой энергией химических связей, несут в себе тот запас энергии, который необходим для, существования животного. Иначе обстоит дело с растениями. Все необходимые вещества они образуют только из компонентов, находящихся в аквариуме.
Формы, в которых находятся биогенные элементы, а также их концентрация, тесно связаны с химическими процессами, протекающими в аквариуме, и с физико-химическими свойствами воды. Например, водопроводная вода содержит значительное количество двух- валентного железа. Оно легко усваивается растениями. В аквариуме железо (II) быстро окисляется до трехвалентного и, вступая в реакцию с карбонатами и фосфатами, выпадает в виде трудно растворимого осадка и становится непригодным для питания растений.
Рассмотрим отдельные биогенные элементы, их содержание в воде и значение для растительных организмов.
Основная масса растения представлена веществами, состоящими из кислорода, углерода и водорода. Клеточные стенки, образующие скелет растения, состоят в основном из целлюлозы, запасы питательных веществ содержатся, главным образом, в виде сахара и крахмала. В состав всех названных веществ входят элементы О, С, Н.
Азот входит в состав всех белковых молекул и аминокислот. Содержание азота в среднем составляет 3%. Животные получают азот из животной или растительной пищи, а растения - в виде неорганических соединений, главным образом, нитратов (NO3-) и аммония (NH4+). Свободный азот из атмосферы недоступен водным растениям. Недостаток азота ведет к снижению содержания хлорофилла в листьях, в первую очередь в старых, к уменьшению размеров растения. В аквариуме, населенном рыбами, азотное голодание растений практически не встречается. Чаще наблюдается избыток азотных соединений.
На следующем месте после азота по потреблению стоит фосфор. Его содержание в растениях составляет около 0,23%. фосфор входит в состав макроэнерготических соединений живого организма, например АТФ и АДФ. Фосфатные связи этих соединении позволяют накапливать энергию, запасать ее и использовать для образования сложных органических молекул, транспорта молекул и переноса энергии в клетке.
Основным источником фосфора для растений служат фосфаты. Наибольшее количество фосфатов находится в виде дигидрофосфат-ионов Н2РО4-. Некоторое количество фосфатов содержится также в виде ионов НРО4 2- и P04 3-. Количественные соотношения этих ионов тесно связаны с кислотностью воды. Абсолютное содержание фосфора в водопроводной и природной воде составляет от 1 до 100 мкг/л. В аквариум фосфор попадает со свежей водой и кормом для рыб. Остатки органических веществ поступают в грунт, где преобразуются в неорганические фосфат-ионы и в таком виде усваиваются растениями. При недостатке фосфора в листьях накапливается красный пигмент антоциан, листья мельчают и становятся уже.
Значение биогенного элемента калия для растения многообразно. Он способствует нормальному протеканию фотосинтеза, участвует в образовании питательных веществ. Приблизительное содержание калия в растениях составляет 1,4%. Основная масса его находится в виде ионов К+, которые легко перемещаются через клеточные мембраны. Больше всего ионов калия содержится в листьях растений. Недостаток этого элемента нарушает азотный обмен и приводит к отмиранию тканей.
Сера входит в состав некоторых аминокислот, которые в свою очередь являются составными частями белков, Кроме того, сера содержится в веществах, необходимых для осуществления различных окислительно-восстановительных реакций в процессе фотосинтеза. Содержание серы составляет приблизительно 0,35%, Она потребляется растениями главным образом в виде сульфат-ионов S04 2-. При недостатке этого элемента задерживается рост и размножение растения.
Содержание кальция в растении составляет 1,8%. Он входит в состав клеточных стенок в виде мало растворимых солей. Кальций играет важную роль в избирательной проницаемости клеточных мембран. Недостаток этого элемента приводит к недостаточной "плотности" мембран с точки зрения диффузии через них различных веществ. Если молодым растениям не хватает кальция, то они бледнеют и приобретают неправильную форму. В аквариумных условиях обычно недостатка кальция не наблюдается, т. к. он всегда содержится в водопроводной воде в достаточном количестве.
Большое значение в жизни растений имеет магний. Он входит в состав молекул хлорофилла. Содержание магния в растениях составляет 0,32%. При недостатке этого элемента листья желтеют от дефицита хлорофилла. Недостаток магния может создаваться при относительно высоком содержании кальция вследствие антагонизма между ионами Са2+ и Мg2+. Во многих районах средней полосы нашей страны содержание магния в природной воде невелико, и оно быстро убывает при развитии растительности. Поэтому многим аквариумистам приходится вносить этот элемент в аквариумную воду.
Содержание хлора в растениях составляет 0,2%. В виде хлорид-анионов Сl- он участвует в регуляции внутриклеточного давления. У некоторых растений содержание хлора невелико, его роль выполняют органические ионы и он не является необходимым элементом. В некоторых случаях хлор стимулирует вспомогательные процессы фотосинтеза, прежде всего те из них, которые связаны с аккумулированием и выделением энергии (однако точно его роль в этих процессах еще не определена). В природных водах всегда содержится достаточное для растений количество хлорид-ионов.
Содержание натрия в растениях составляет 0,12%. Несмотря на высокое содержание, его роль в жизни растения изучена недостаточно. Известно, что натрий способствует созданию высокого осмотического давления в клетках и является антагонистом калия. В воде этот элемент всегда присутствует в достаточных количествах в виде катионов натрия Na+.
Следующая группа питательных веществ - микроэлементы. Они входят в состав различных ферментов и принимают участие в биохимических реакциях. Железо содержится во всех растениях (массовая доля составляет 0,014%). Оно входит в состав многих важных растительных ферментов, участвующих в окислительно-восстановительных реакциях, где используется способность железа резко переходить из двух- в трехвалентное состояние и обратно: Fe3+ + е- = Fe2+
Эти ферменты участвуют в синтезе хлорофилла. При недостатке железа синтез хлорофилла затруднен, а при сильном недостатке листья могут стать совсем белыми. Заболевание, вызванное недостатком железа, носит название хлороза. Аквариумные растения часто страдают от этой болезни, т. к. в воде, богатой фосфатами, железо быстро выпадает в осадок. Обеспечение нормального питания железом - одна из наиболее важных задач при культивации водных растений,
Мы в течение ряда лет при культивации аквариумных растений используем различные минеральные подкормки, в том числе соединения железа. Наиболее эффективно применение комплексных соединений железа (II) с органическими комплексообразующими агентами, например, этилендиаминтетрауксусной кислотой (ЭДТА). Химический анализ воды в аквариуме показывает, что особенно интенсивное поглощение комплексных соединений железа происходит в первые 12 ч после введения добавки. Затем, в течение трех суток, концентрация железа в воде постепенно снижается и становится приблизительно в 5-10 раз меньше исходной (сразу после введения добавки). Поэтому необходимо регулярно, не реже двух раз в неделю, подкармливать аквариумные растения железосодержащими препаратами.
Кроме ЭДТА в качестве комплексообразующих агентов применялись и другие органические соединения. Эффективность некоторых из них при нейтральной и щелочной реакции воды оказалась значительно выше, чем эффективность ЭДТА (рис. 15).
Содержание меди в растении составляет 0,0015%. Медь служит составной частью некоторых окислительных ферментов и белков, таким образом способствуя росту и развитию растений. По нашим данным, медь Довольно активно поглощается из воды аквариумными растениями: после внесения добавки, содержащей микроколичества сульфата меди (II), в течение 12-20 часов концентрация этого элемента в воде падает практически до нуля (анализ проводился с использованием высокоточных инструментальных методов).
Аквариум - это замкнутое пространство, и при неправильном внесении удобрений или микроэлементов концентрация какого-либо элемента может быстро выйти из пределов, полезных растению: добавка станет опасной для обитателей аквариума и даже для самих растений. Избыток макроэлементов может привести к бурному развитию водорослей и ухудшению биохимического режима аквариума.
Кроме воздействия на организмы, ряд элементов взаимодействует между собой, вступая в химические реакции и образуя неусваиваемые растениями соединения. Эти процессы быстро протекают в аквариумной воде, богатой продуктами разложения органических веществ. Фосфаты и сульфаты за короткий промежуток связывают ряд необходимых растению ионов металлов с образованием нерастворимого осадка.
Некоторые элементы являются антагонистами. Находясь в растворе и имея одинаковый по знаку заряд, они взаимно подавляют присущее каждому из них действие. Среди таких антагонистических пар можно назвать ионы натрия и калия, железа и марганца, кальция и магния.
Степень использования питательных веществ сильно зависит от рН среды, что мы уже видели на примере усвоения комплексных соединений железа. В кислой среде, когда рН меньше 6, поглощение катионов (Са+, Мg+, К+ и др.) затрудняется из-за антагонистического действия ионов водорода. Некоторые элементы (Fe, Al) в кислой среде имеют избыточную доступность, и, если в грунте их содержится слишком много, они могут оказывать токсическое воздействие на растения и рыб. При рН больше 7 возможно образование нерастворимого фосфата кальция, что приводит к ухудшению фосфорного обмена. В этих же условиях марганец переходит в четырехвалентные соединения, которые не усваиваются растениями. При рН выше 8 железо переходит в нерастворимые гидроксиды.
Наиболее благоприятным для большинства аквариумных растений следует считать значение рН 6,5- 7,5, При такой кислотности воды большинство элементов находится в состоянии, доступном для растений. а также создаются благоприятные условия для усвоения углекислого газа. Значение рН аквариумной воды близкое к 7 устанавливается обычно при жесткости воды dGH от 6 до 10.
Для обеспечения гидрофлоры питанием достаточно только минеральных (неорганических) веществ. Из биогенных элементов растение создает свой организм, синтезирует витамины, гормоны, аминокислоты и другие сложные кислоты. Однако в питании растений могут участвовать и органические вещества, в основном те, которые содержатся в грунте. Они главным образом состоят из остатков отмерших и разлагающихся растительных и животных тканей. При разложении сложных органических веществ образуются более простые структуры, которые могут использоваться растением, При этом организм выбирает те элементы, которых недостаточно в питающей среде. Если применяется комплексное минеральное питание, содержащее все необходимые растению вещества, то органические соединения не нужны.
В ряде случаев в состав удобрений для аквариумных растений включаются витамины. Аквариумисты, добавляющие витаминные препараты в аквариумную воду, иногда наблюдают улучшение роста растений. Порой положительный эффект можно объяснить наличием некоторых микроэлементов, например кобальта в витамине B12. Поэтому такие добавки при достатке минерального питания не нужны: здоровое растение может создать для себя все необходимые витамины и другие биологически активные вещества. Добавки органических удобрений и витаминов аквариумистами могут применяться только в специальных случаях, например, для создания необходимых условий для одного или нескольких растений.
Источник: И.Г.Хомченко, А.В.Трифонов, Б.Н.Разуваев "Современный аквариум и химия"